2. V. I. Yakovlev, "On the theory of an inductive MHD propulsion unit with a free field," Dokl. Akad. Nauk SSSR, 249 , No. 6 (1979); Zh. Prikl. Mekh. Tekh. Fiz., No. 3 (1980).

TRANSFORMER COUPLING OF INDUCTIVE AND RESISTIVE
LOADS TOA MAGNETIC CUMULATION GENERATOR
A. S. Kravchenko, R. Z. Lyudaev,
A. I. Pavlovskii, L. N. Plyashkevich,
and A. M. Shuvalov

UDC 538.4:621.31

Magnetic cumulation (or explosive magnetic) generators are promising as high-power pulsed electrical energy sources [1-3]. When the load is connected directly into the circuit of the magnetic cumulation generator (MCG), the latter can operate efficiently only if restrictions are imposed on the inductance and resistance of the load, whereas in many applications the load parameters substantially exceed the inductance and resistance of the MCG, and the required time for energy input to the load may differ substantially from the general working time. One of the ways of matching the MCG parameters to the load is to use a stepup transformer [1]. Some designs of MCG with transformers have been described [3-7], with discussions of the matching of MCG to resistive and inductive loads. Some applications of transformer MCG in physics research have been discussed in [8-10].

Here we consider forms of transformer output from MCG to inductive and resistive loads. An electrotechnical model is convenient for engineering calculations on transformer MCG, as supplemented with the experimental fact that there is an energy-optimal finite inductance for the generator.

1. In the electrotechnical model, the operation of the MCG is described by a series RL circuit with variable inductance L and resistance R, which formally includes all the losses of magnetic flux Φ. Then $I=\varphi \Phi_{0} / L$, where I is the current in the generator and $\varphi=\exp \left(-\int_{0}^{t} \frac{R}{L} d t\right)$, while the subscripts 0 and f denote the values of quantities, respectively, at the start and end of the operation of the MCG. If $|d L / d t|>R$, Iincreases, while the magnetic energy W increases if $|d L / d t|>2 R$. If $L_{f} \rightarrow 0$ when these conditions are met, then $I_{f} \rightarrow \infty$, which lacks physical meaning, and in that case the problem falls outside the framework of the electrotechnical model. In practice there is some minimum permissible value L_{f} for each generator.

Figure 1 shows the equivalent electrotechnical scheme for an MCG with a transformer working into a resistance R_{l} and inductance L_{l} with switch K closed and constant L_{2} and R_{2}, which is described by the system of equations

$$
\begin{gather*}
d\left(L_{1} I_{1}\right) / d t+R_{1} I_{1}+L_{12} d I_{2} / d t=0 \tag{1.1}\\
L_{2} d I_{2} / d t+R_{2} I_{2}+L_{12} d I_{1} / d t=0 \tag{1.2}
\end{gather*}
$$

where $L_{1}=L_{g}+L_{1 t} L_{g}$ is the working inductance of the MCG, $L_{1 t}$ is the inductance of the primary winding of the transformer, which includes $\mathrm{L}_{\mathbf{c}}$, the inductance of the current lead from the MCG to the transformer; $\mathrm{L}_{2}=$ $L_{l}+L_{2 t}, L_{2 t}$ is the inductance of the secondary winding in the transformer; $L_{12}=k\left(L_{1 t} L_{2} t\right)^{-1 / 2}$, L_{12} is the mutual inductance, k is the transformer coupling coefficient on the basis of L_{c}, while R_{1} and R_{2} are the circuit resistances, and R_{l} appears in R_{2}.

If $R_{2}=0$ we have from (1.1) and (1.2) that

$$
I_{1}=\varphi \mathrm{e}^{\Phi_{0} / L_{\mathrm{e}}, I_{2}=-I_{1} L_{12} / L_{2}+I_{10} L_{12} / L_{0}+I_{20}, ~}
$$

where

$$
L_{\mathrm{e}}=L_{1}-L_{12}^{2} / L_{2} ; \quad \mathrm{\Phi}_{0}=I_{1 v}\left(L_{0}-L_{12}^{2} / L_{2}\right) ; \quad \Psi_{\mathrm{e}} \cdots \exp \left(-\int_{0}^{t} \frac{R_{1}}{L_{\mathrm{e}}} d t\right)
$$

[^0]

Fig. 1

Fig. 2

Fig. 3
where L_{0}, I_{10}, I_{20} are the initial values of L_{1}, I_{1}, I_{2}; in that case the effect of the secondary circuit is to reduce L_{1} to L_{e}, and the MCG is loaded not by $L_{i f}=L_{1 t}$ but by $L_{e f}$. If the optimum lies outside the framework of the model, this enables one to choose Lef by using experimental data or the particular MCG as appropriate to the final inductance. The magnetic energy in the load is $\mathrm{W}_{\mathrm{m}}=\psi \mathrm{W}$, where W is the total magnetic energy in the MCG and $\psi=\mathrm{L}_{l} \mathrm{~L}_{12}^{2} /\left[\mathrm{L}_{2}\left(\mathrm{~L}_{1} \mathrm{~L}_{2}-\mathrm{L}_{12}^{2}\right)\right]$.

For $\mathrm{k}=1$ we have $\psi_{\mathrm{f}}=1 /(1+\alpha)<1$ if $\alpha=\mathrm{L}_{l} / \mathrm{L}_{2} \mathrm{t} \neq 0$, i.e., even a transformer with ideal coupling does not allow one to transfer all the generator energy into an inductive load, and $\psi_{f} \rightarrow 1$ for $\alpha \rightarrow 0$, but then $\mathrm{L}_{\mathrm{ef}}=\mathrm{L}_{\mathrm{ft}}\left(1-\psi_{\mathrm{f}}\right) \rightarrow 0$ and may become less than the optimum value of the final inductance of the MCG. For $k \neq 1$ we have $L_{e f}=L_{t} t\left[1-k^{2} /(1+\alpha)\right]$, and Fig. 2 shows the dependence of $L_{e f} / L_{\text {lt }}$ on α for various k. The value of ψ_{f} is maximal for $L_{e f} / L_{t} t=\left(1-k^{2}\right)^{1 / 2}$.

If also $R_{1}=0$, then the final energy of the MCG and load will be determined by the dimensionless parameters k, α, and l :

$$
w_{f}=\frac{l(1+\alpha)-k^{2}}{1+\alpha-k^{2}}, \quad w_{m f}=\frac{\alpha k^{2}}{\left(1+\alpha-k^{2}\right)^{2}}\left(l-\frac{k^{2}}{1+\alpha}\right),
$$

where $l=\mathrm{L}_{0} / \mathrm{L}_{1} \mathrm{t} ; \mathrm{w}_{\mathrm{f}}=\mathrm{W}_{\mathrm{f}} / \mathrm{W}_{0} ; \mathrm{w}_{\mathrm{mf}}=\mathrm{W}_{\mathrm{mf}} / \mathrm{W}_{0}$. Figure 3 shows w_{mf} as a function of α for various k for $l=$ 10. At the maximum $W_{m f}$ we have $L_{e f} / L_{i t}=\left(1-k^{2}\right) /\left(1-k^{2} / 2\right), \alpha=1-k^{2}$, and for $R_{1} \neq 0$ the position of the maximum is determined by the character of the magnetic-flux decay. For example, in the case $\mathrm{L}_{1}=\mathrm{L}_{0}(1-a \mathrm{t})$, where a is a positive constant with the dimensions of sec^{-1}, which is characteristic of coaxial MCG and also of MCG with spirals of constant pitch and R_{1}, we have that $w_{m f}$ has a maximum for $\alpha=\left[\sqrt{\mu^{2} k^{4}+4\left(1-k^{2}\right)}-\mu k^{2}\right] / 2$, where $\mu=1+2 R_{1} /\left(d L_{1} / d t\right)$, which is true also for an exponentially decreasing inductance $L_{1}=L_{0} e^{-a t}$, which approximately describes the inductance law for spirals of variable pitch and constant L_{1} / R_{1}.

For the given $\mathrm{L}_{2 t}$ the necessary α is attained by selecting $\mathrm{L} l$. On the other hand, in selecting a transformer for a particular value of L_{l} we can provide the required α by varying $\mathrm{L}_{1 \mathrm{t}}$ or L_{12}, i.e., by choosing the number of turns on the secondary winding. If it is possible to provide a constant value of k by design (which is not always possible), it is necessary to select $L_{i 2}=k \sqrt[4]{L_{i t}^{2} L_{l}^{2}\left(1-k^{2}\right)}$ for the maximum ψ_{f}, while for the maximum $w_{m f}$ (for $R_{1}=0$) we must have $L_{12}=k\left[L_{11} L_{l}\left(1-k^{2}\right)\right]^{1 / 2}$. The relation between L_{12} and $L_{1 t}$ is determined by the transformer design. If, for example, $\mathrm{L}_{1 \mathrm{t}}=\mathrm{L}_{12} /(\mathrm{kN})$, where N is the number of turns on the secondary winding, then for given $L_{1 t}$ and k it is necessary in order to obtain maximum ψ_{f} that $N=\left(L_{l} / L_{1 f}\right)^{1 / 2}\left(1-k^{2}\right)^{1 / 4}$, and for the given N and k it is necessary to have $\mathbf{L}_{\mathrm{it}}=\mathrm{L}_{l} /\left[\mathrm{N}^{2}\left(1-\mathrm{k}^{2}\right)^{1 / 2}\right]$.
2. To illustrate the effects of R_{2} we consider the solution to (1.1) and (1.2) for $R_{1}=0, I_{20}=0$, i.e., switch K is closed at the start of operation of the MCG. Then (1.1) and (1.2) are solved in quadratures for uniform and exponential laws for L_{1}. For example, in the second case we can write

$$
i_{2}=l(1+\alpha)\left[l(1+\alpha)-k^{2} \mathrm{e}^{\alpha t t^{v-1}} \mathrm{e}^{-\alpha v t} \int_{1}^{z}\left[\frac{z}{l(1+\alpha)-k^{2} z}\right]^{v} d z,\right.
$$

with the final value

$$
i_{2 f}=(1+\alpha)\left(1+\alpha-k^{2}\right)^{v-1} \int_{1}^{l}\left[\frac{z}{l(1+\alpha)-k^{2} z}\right]^{v} d z_{x}
$$

where

$$
i_{1}=I_{1} / I_{10} ; i_{2}=-I_{2} L_{2} /\left(L_{12} I_{10}\right) ; z=L_{0} / L_{1}=\mathrm{e}^{a t},
$$

Fig. 4
and $\nu=\mathrm{R}_{2} /\left(a \mathrm{~L}_{2}\right)$. Analogous expressions may be derived for a uniform law for I_{1}. The final values for the energy coefficients in both cases are given by

$$
\begin{gathered}
w_{m f}=\frac{\alpha k^{2} i_{2 f}^{2}}{l(1+\alpha)^{2}}, \quad \psi_{f}=\frac{\alpha k^{2} i_{2 f}^{2}}{l^{2}(1+\alpha)^{2}+k^{2}\left(1+\alpha-k^{2}\right) i_{2 f}^{2}}, \\
w_{q f} \text { (uniform law) }=\frac{2 v k^{2}}{l(1+\alpha)} \int_{1}^{l} \frac{i_{2}^{2} d z}{z^{2}}, w_{q f}(\text { exponential })=\frac{2 v k^{2}}{l(1+\alpha)} \int_{1}^{l} \frac{i_{2}^{2} d z}{z},
\end{gathered}
$$

where $\mathrm{w}_{\mathrm{qf}}=\mathrm{W}_{\mathrm{qf}} / \mathrm{W}_{0}$ and W_{qf} is the energy deposited in R_{2} during the operating cycle T of the MCG. The load R_{l} receives energy $\mathrm{W}_{\mathrm{qf}} \mathrm{R}_{l} / \mathrm{R}_{2}$, so the problem is determined by the dimensionless parameters $\mathrm{k}, l, \alpha, \nu$.

Figure 4 shows w_{mf} and ψ_{f} as functions of α for various ν for both cases as calculated for $l=10$ and $\mathrm{k}=$ 0.9 ; the two cases differ in the effects of α and ν on the maximum in the curve $[a) L_{1}=L_{0} e^{-a t}$; b) $L_{1}=L_{0}(1-$ at)].

Figure 5 shows $\mathrm{w}_{\mathrm{q}} \mathrm{f}$ as a function of ν for various α for $l=10$ and $\mathrm{k}=0.95$ [solid lines $\mathrm{L}_{1}=\mathrm{L}_{0} \mathrm{e}^{-a t}$, broken lines $\left.\mathrm{L}_{1}=\mathrm{L}_{0}(1-a \mathrm{t})\right]$.

If $\mathrm{R}_{2} \ll\left(\mathrm{~L}_{2} / \mathrm{I}_{2}\right) \mathrm{dI}_{2} / \mathrm{dt}$, (1.1) and (1.2) have an approximate solution

$$
I_{1} \approx \Phi_{0} \varphi_{\mathrm{e}} / L_{\mathrm{e}}, I_{2} \approx-L_{12} I_{1} / L_{2}
$$

where $\varphi_{\mathrm{e}}=\exp \left(-\int_{0}^{t} \frac{R_{\mathrm{e}}}{L_{\mathrm{e}}} d t\right) ; \mathrm{R}_{\mathrm{e}}=\mathrm{R}_{1}+\mathrm{R}_{2} \mathrm{~L}_{12}^{2} / \mathrm{L}_{2}^{2}$.
It is also possible to obtain an analytical solution to (1.1) and (1.2) if $L_{1}=L_{0} /(1+a \mathrm{t}), \mathrm{R}_{1}=0$, although this inductance law is not very characteristic of MCG.
3. A transformer also enables one to adjust the shape of the current pulse in the load within certain limits. The maximum power is usually developed at the end of the MCG cycle. The method of [7] allows one to sharpen the leading edge of the current without breaking the circuit; initially, the transformer operates with the secondary circuit open (no load), and switch K is closed only at certain time τ after the start of the MCG. Then the length of the leading edge will be $\mathrm{T}-\tau$ (if I_{2} rises up to the end of the MCG operation). After the switch is closed, for $R_{2}=0$

$$
I_{1}=\frac{\Phi_{0} \varphi_{\tau} \varphi_{e} L_{1 \tau}}{\varphi_{e \tau} L_{e} L_{e}}, \quad I_{2}=-\frac{\Phi_{0} \varphi_{\tau} L_{12}}{L_{1 \tau} L_{2}}\left(\frac{\varphi_{e} L_{\mathrm{e} \tau}}{\varphi_{e_{\tau}} L_{\epsilon}}-1\right),
$$

where the subscript τ denotes the value of the corresponding quantity at the instant of closure and $\mathrm{dI}_{1} / \mathrm{dt}$ increases stepwise on closure by a factor $\mathrm{L}_{1} / \mathrm{L}_{\mathrm{e} T}$.
$W_{m f}$ decreases as $T-T$ decreases. We denote by ε the ratio of $W_{m f}$ for the case of a secondary circuit closed and the value of W_{mf} attained when the switch is closed at time τ, which characterizes the degree of use of the MCG energy. Then $\varepsilon=\left(1-L_{1 t} / L_{1 T}\right)^{2}$ for $R_{1}=0$. Then the degree of shortening in the front is $T /(T-$ $\tau)=(l-1)\left(\varepsilon^{-1 / 2}-1\right)$ for a uniform law for L_{1}, while $T /(T-\tau)=-(\ln l) /\left[\ln \left(1-\varepsilon^{-1 / 2}\right)\right]$ for an exponential law. If $R_{1} \neq 0$, then

$$
\varepsilon=\left[\frac{\Phi_{\tau}}{L_{1 \tau}}\left(\frac{L_{e_{\tau}}}{\varphi_{\mathrm{e} \tau}}-\frac{L_{\mathrm{ef}} \grave{\varphi_{\mathrm{ef}}}}{\varphi}\right)\right]^{2} .
$$

Fig. 5

Fig. 6

This method allows one to reduce the leading edge of the current by a factor of $5-10$ for an inductive load with an applicable value of ε. It is desirable to have a higher value of Φ_{0} for the open-circuit stage in the transformer, since the generator will work with less stress than is the case when the switch is closed. If the W_{0} are then identical for the two cases, ε is increased by a factor of $l(1+\alpha) /\left[l(1+\alpha)-\mathrm{k}^{2}\right]$, or by $l^{2}(1+\alpha)^{2} /[l(1+$ $\left.\alpha)-\mathrm{k}^{2}\right]^{2}$ if the I_{10} are the same. In the case of an ohmic load, the sharp end of the current pulse sharpens the power pulse.

If it is necessary to stretch the current pulse in a resistive load over a time exceeding T, one can include a storage inductance in series with R_{l} to increase L_{l}, the result being that most of the energy is stored in L_{l} while the MCG is working and is then deposited in R_{l} with a relaxation time of L_{l} / R_{l}. Here the transformer unit destroyed at the end of the MCG operation is shunted by an additional switch. In this form of MCG, the device essentially charges an inductive store. The higher power of an MCG distinguishes it from lowpower supplies for inductive stores and subtantially reduces the resistive loss during charging.

The current decay at the end of MCG operation is described by the standard laws for inductively coupled $R L$ circuits, whose initial conditions are $I_{1 f}$ and $I_{2 f}$; if the transformer still functions during the decay time, an additional fraction of the MCG energy can be transferred to the load. If the effects of R_{2} are small during operation of the MCG and the secondary circuit is closed, then $i_{2 f}=i_{1 f}$, and then during current decay

$$
i_{2}=i_{2 f}\left[\mathrm{e}^{\lambda_{2} t}+\left(\mathrm{e}^{\lambda_{1} t}-\mathrm{e}^{\lambda_{2} t}\right) \lambda_{1} /\left(\lambda_{1}-\lambda_{2}\right)\right]
$$

where

$$
\begin{gathered}
\lambda_{1,2}=\left[-\left(\delta_{1}+\delta_{2}\right) \pm \sqrt{\left(\overline{\left.\delta_{1}-\delta_{2}\right)^{2}+4 \delta_{1} \delta_{2} h^{2} /(1+\alpha)}\right] /\left[2-27^{\circ} /(1+\alpha)\right]}\right. \\
\delta_{1}=R_{1} / L_{1} t ; \delta_{2}=R_{2} / L_{2} .
\end{gathered}
$$

At a time $t_{1}=\left[\ln \left(\lambda_{2} / \lambda_{1}\right)\right] /\left(\lambda_{1}-\lambda_{2}\right)$ after the end of MCG operation we have $i_{2}=0$, which is followed by a change of sign, and the maximum in i_{2} of the reverse sign occurs at time $t_{2}=2 t_{1}$, and then i_{2} relaxes. The additional energy $\Delta \mathrm{W}_{\mathrm{q}}$ deposited in R_{2} during the current decay is then given by

$$
\frac{\Delta W_{q}}{W_{f}}=\frac{k^{2}}{(1+\alpha)\left(1+\delta_{1} / \delta_{2}\right)},
$$

from which the necessity of the condition $\delta_{2} \gg \delta_{1}$ follows. This condition is difficult to meet when it is desired to stretch the current pulse substantially. When α is varied, it is necessary to allow for the effects on the working stage of the MCG, and if here one can neglect R_{1}, then

$$
\frac{W_{q f}+\Delta W_{q}}{W_{0}}=\frac{k^{2}\left[l(1+\alpha)-k^{2}\right]}{(1+\alpha)\left(1+\alpha-k^{2}\right)\left(1+\delta_{1} / \delta_{2}\right)}
$$

If the secondary circuit is closed at time τ, then $i_{2 f}=i_{1 f}-i_{1 \tau}$ for small R_{1} and R_{2}. Also, $i_{2 f}$ decreases as τ increases, and there is an increase in the amplitude of i_{2} in the reverse half-wave, with a maximum be tween t_{1} and t_{2}. There is also an increase in the magnetic flux linked to the secondary circuit at the instant of closure. For $\tau=T$, practically the entire flux of the MCG is involved, and $\mathbf{i}_{2 f}=0$, and there is only a reverse current half-wave, whose maximum will occur at t_{1}, which also defines the length of the current leading edge. Under these conditions the secondary circuit does not influence the operation of the MCG, and for any R_{1} and R_{2} we have

$$
i_{2}=\frac{i_{1} \delta_{1}(1+\alpha)}{\left(1+2-i^{2}\right)\left(\lambda_{1}-\lambda_{2}\right)}\left(\mathrm{e}^{\lambda_{2} i}-\mathrm{e}^{\lambda_{1} i}\right),
$$

$$
\frac{\Delta W_{g}}{W_{t}}=\frac{k^{2}}{(1+\alpha)\left(1+\delta_{2} / \delta_{1}\right)} .
$$

If we take $\delta_{2} \ll \delta_{1}$, this reduces W_{f}, and therefore it is rational to increase δ_{1} only after the end of MCG operation, e.g., by breaking the circuit. It is best to reduce δ_{2} not by varying α but by reducing R_{2} by increasing the quality factor of the secondary winding on the transformer, although this involves increasing the size of the transformer unit.

Figure 6 shows curves for \mathbf{i}_{2} calculated for a uniform law for L_{1} with $l=10, \mathrm{k}=0.9, \alpha=1, \delta_{1} \mathrm{~T}=0.5$, $\delta_{2} \mathrm{~T}=0.1$ without allowance for R_{1} and R_{2} in the MCG operation. Curve 1 corresponds to the secondary circuit closed; curve 2 is for $\tau=0$, and curve 3 is for $\tau=0.4 \mathrm{~T}$, while curve 4 is for $\tau=1$ (flux-trapping mode).

In the last case, the energy L_{l} is maximal at time t_{1} after the closure, and

$$
\frac{w_{m}}{W_{f}}=\frac{\omega_{1}^{2}}{\left(1-1-n_{2}\right)^{2} \lambda_{2}^{(}}\left(\frac{\lambda_{2}}{\lambda_{1}}\right)^{2 \lambda_{2} /\left(\lambda_{1}-\lambda_{2}\right)}
$$

For $\delta_{2} \ll \delta_{1}$

$$
i_{2} \approx-i_{1} y\left(1-a x p\left[-\frac{s_{1}(1+\alpha)}{1+\alpha-n^{2}}\right]\right\}, \frac{W_{i}}{W_{j}} \approx \frac{\alpha h^{2}}{(1+\alpha)^{2}}
$$

If δ_{1} is increased rapidly after the end of MCG operation, one can produce for example a current pulse with a sharp leading edge and a prolonged decay if δ_{2} is sufficiently small.

It is desirable in flux-trapping mode that L_{1} should be equal to the optimum final inductance for the given MCG while maintaining the same l, k, and α; this provides working conditions in the generator as with the secondary circuit closed, while the maximum value of i_{2} is increased (curve 4^{\prime} in Fig. 6).

There are also other possible forms of supply circuit for inductive and resistive loads using transformer MCG.

LITERATURE CITED

1. R. Z. Lyudaev et al., "Magnetic cumulation," Dokl. Akad. Nauk SSSR, 165, No. 1 (1965).
2. H. Knoepfel, Pulsed High Magnetic Fields, American Elsevier, New York (1970).
3. E. I. Bichenkov, "Explosive generators," Dokl. Akad. Nauk SSSR, 174, No. 4 (1967).
4. D. B. Cummings, "Cascading explosive generators with autotransformer coupling," J. Appl. Phys., 40, No. 10 (1969).
5. L. S. Gerasimov, "Matching an explosive magnetic generator to an inductive load," Zh. Tekh. Fiz., 44, No. 9 (1974); L. S. Gerasimov, "Matching an explosive magnetic generator to a resistive load by means of a transformer," Zh. Prikl. Mekh. Tekh. Fiz., No. 4 (1978).
6. F. Herlach, "Explosive-driven energy generators with transformer coupling," J. Phys. E, Sci. Instrum., 12, 421 (1979).
7. A. I. Pavlovskii, R. Z. Lyudaev, L. N. Plyashkevich, and V. E. Gurin, "An explosive magnetic generator," Byul. OIPOTZ, No. 11 (1970).
8. A. E. Voitenko, E. P. Matochkin, and B. A. Yablochnikov, "Use of an explosive magnetic generator to supply a gas discharge," Prib. Tekh. Eksp., No. 3 (1973).
9. A. I. Pavlovskii, G. D. Kuleshov, et al., "A pulsed iron-free betatron with supply from a magnetic cumulation generator," At. Energiya, 41, No. 2 (1976).
10. A. I. Pavlovskii et al., "Magnetic cumulation generators with transformer energy output: generation and transmission to a distance for electromagnetic pulses for the magnetic cumulation generators,". V. K. Chernyshev and V. A. Davydov, "The limiting performance of the transformer method of energy transmission from an explosive magnetic generator to an inductive load," in: Proceedings of the Second International Conference on the Generation of Megagauss Magnetic Fields, Washington (1979).

[^0]: Moscow. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 5, pp. 116-121, September-October, 1981. Original article submitted August 5, 1980.

